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Abstract. Motivated by the observation of a spin-glass transition in almost disorder-free Kagome antifer-
romagnets, and by the specific form of the effective low-energy model of the S = 1/2, trimerized Kagome
antiferromagnet, we investigate the possibility to obtain a spin-glass behavior in two-component, disorder-
free models. We concentrate on a toy-model, a modified Ashkin-Teller model in a magnetic field that
couples only to one species of spins, for which we prove that a dynamic spin-glass behavior occurs. The
dynamics of the magnetization is closely related to that of the underlying Ising model in zero field in which
spins and pseudo-spins are intimately coupled. The spin-glass like history dependence of the magnetization
is a consequence of the ageing of the underlying Ising model.

PACS. 75.10.Jm Quantized spin models – 75.10.Nr Spin-glass and other random models – 75.50.Lk Spin
glasses and other random magnets

1 Introduction

The experimental investigation of quantum magnets is un-
dergoing rapid progress with the synthesis of new and bet-
ter controlled samples. Of special interest are frustrated
magnets, for which very unusual behavior has been re-
ported [1]. In particular, a behavior reminiscent of spin
glasses has been reported in a number of Kagome antifer-
romagnets (AF) [1,2]. While the role of disorder in these
phenomena cannot be excluded yet, the persistence of this
behavior in progressively cleaner samples calls for expla-
nations in terms of disorder-free models.

The possibility of a spin-glass behavior in the spin
1/2 Heisenberg model on the Kagome lattice without
any disorder was first suggested in the pioneering work
of Chandra et al. [3] in 1993. Since the classical Heisen-
berg model on the Kagome lattice does not exhibit a spin-
glass behavior, the main problem one is facing is how to
include the quantum aspects of the problem into a de-
scription in terms of classical variables for which one can
use standard techniques to study the dynamics. In refer-
ence [3], the authors assumed that quantum fluctuations
select coplanar configurations, which led them to concen-
trate on the anisotropic XY version of the model. For this
model, they suggested the presence at finite temperature
of 3-spin order, and of a glassy transition related to the
binding of non-abelian defects that are expected to be
the natural point defects associated with this type of or-
der. For details, the reader should consult reference [3]. To

a e-mail: frederic.mila@ipt.unil.ch

prove or disprove this scenario turned out to be difficult,
and whether this indeed provides an explanation of the
spin-glass behavior of Kagome antiferromagnets without
introducing any disorder remains unsettled. Since then,
clear evidence of glassiness has been reported by Chandra
et al. [4] for another class of disorder-free models describ-
ing periodic Josephson arrays in a transverse magnetic
field, but these models are not directly related to the
Kagome AF.

In parallel, a lot of progress has been made in the un-
derstanding of the spectrum of the S = 1/2 AF Heisen-
berg model on various frustrated lattices, in particular the
Kagome and the pyrochlore ones [1]. So far, it is well es-
tablished that frustration can have two effects: It can open
a gap to triplet excitations [5], like for the non-frustrated
spin 1 chain [6], but it can also lead to a proliferation
of low-lying singlets inside this gap, like for the S = 1/2
Kagome antiferromagnet [7]. These singlets can be inter-
preted as RVB (Resonating Valence Bond) states [8–10],
and they could lead to a power-law behavior of the low-
temperature specific heat [11–13]. Experimental systems
known so far have a larger spin however (3/2, 5/2, ...) [1],
and there is room for new physics in these cases since the
presence of a singlet-triplet gap is unlikely given the rather
small value already reported for S = 1/2. Possible impli-
cations of this strange spectrum regarding in particular a
possible spin-glass behavior have not been discussed yet,
mainly due to the lack of methods to attack this problem.

In this paper, we continue the quest initiated in refer-
ence [3] for spin-glass behavior in the disorder-free, quan-
tum Heisenberg model on the Kagome lattice. However,
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Fig. 1. Trimerized Kagome lattice showing the difference be-
tween strong bonds (black triangles) and weak bonds (white
triangles).

building on the recent results obtained on the low-energy
spectrum of the model, we propose another approximate
way of including quantum fluctuations into a classical de-
scription. The starting point is the effective model ob-
tained in reference [14] for the spin 1/2 Heisenberg model
on the trimerized Kagome lattice (see Fig. 1). This is
a modified version of the spin 1/2 Heisenberg model on
the Kagome lattice in which the exchange integrals take
two different values J and J ′ according to the pattern of
Figure 1. This is actually the relevant description of the
Kagome layers in SrCr9pGa12−9pO19 since the presence of
a triangular layer between pairs of Kagome layers lead to
two types of bonds with precisely the pattern of Figure 1.
Then, since the ground state of a triangle is fourfold de-
generate and can be described by two spin 1/2 degrees of
freedom, the total spin σ and the chirality pseudospin τ ,
it was shown in reference [14] that the low-energy effective
Hamiltonian in the limit J ′ � J can be written

H̃ = (J ′/9)
∑
〈i,j〉

H̃σ
ij · H̃τ

ij , H̃σ
ij =

∑
〈i,j〉

σi.σj ,

H̃τ
ij = (1− 2(αijτ−i + α2

ijτ
+
i ))(1− 2(βijτ−j + β2

ijτ
+
j )) (1)

where 〈i, j〉 denotes pairs of nearest neighbors. In H̃τ
ij ,

αij and βij are complex parameters that take the values
1, exp(2πi/3) or exp(4πi/3) depending on the bond (for
details, see Ref. [14]).

In the case of the trimerized Kagome lattice, quantum
fluctuations thus introduce an extra local degree of free-
dom in the Hamiltonian. For the general case, the deriva-
tion is no longer valid since J ′/J is not a small parameter,
but the low-energy spectrum found in exact diagonaliza-
tions of small clusters [7] is still consistent with such a de-
scription: The exponentially large number of low-lying sin-
glets suggest that there must be another quantum number
in addition to the spin to classify these eigenstates. This
is precisely the role played by the chirality pseudo-spin in
the trimerized Kagome lattice. A detailed comparison of
both spectra has actually shown that they are very similar
indeed [10].

We would therefore like to propose a new approach to
the spin-glass behavior of disorder-free quantum magnets

in terms of models with two-local degrees of freedom. Our
basic motivation for concentrating on such models is that
they are a priori good candidates to exhibit spin-glass be-
havior even without any disorder in the Hamiltonian. The
basic argument is the following. In a field-cooled (FC) ex-
periment, in which one quenches the sample from high
temperature in a magnetic field, the system will automat-
ically choose configurations in which the spins are polar-
ized, and the pseudo-spins will adapt to keep the energy
as low as possible. Hence the resulting magnetization at
low temperature is expected to be significant. However,
in a zero-field cooled (ZFC) experiment, the system is
first quenched without a magnetic field, and it will use
both degrees of freedom to minimize the energy. When
the magnetic field is switched on, in order to polarize, the
system will have to overcome the intimate mixing of spins
and pseudo-spins to get a significant polarization. This is
likely to take a very long time, and the apparent suscep-
tibility will be much smaller than the one measured in a
FC experiment.

The analysis of the model of equation (1) with the
spin and the pseudo-spin treated as classical Heisenberg
variables is a considerable task, and before starting such
an endeavor, one would like to know whether the scenario
outlined in the previous paragraph can indeed lead to a
spin glass behavior. In fact, other models, like the fully
frustrated XY model [15] or some vector models [16], can
be described in terms of spin and chirality variables, and
no spin-glass behavior was ever reported for these models.
Consequently the rest of the paper is devoted to a detailed
analysis of a toy model to test whether the presence of two
local degrees of freedom can indeed lead to a spin-glass
behavior. The simplest model of this kind is a modified
Ashkin-Teller model defined by the Hamiltonian:

H = J
∑
〈i,j〉

SiSjTiTj − h
∑
i

Si. (2)

In this Hamiltonian, Si and Ti are Ising variables that
describe the spin and the pseudo-spin respectively. Note
that the magnetic field h is coupled only to the spin degree
of freedom. Since frustration has already been included
in the model as an extra degree of freedom, there is no
need to work on a frustrated lattice any more, and for
simplicity we study this model on a square lattice. This
model is of course a very dramatic simplification since the
Heisenberg spins and pseudo-spins are replaced by Ising
variables. Still, as we shall see, the physics of this model
is very rich, and to a large extent confirms the simple pic-
ture of the previous paragraph. Shortcomings that might
be overcome by going to the more physical description
in terms of Heisenberg spins will be discussed in the last
section.

2 Monte-Carlo results

Let us first discuss the equilibrium properties of this
model. If h = 0, this model is equivalent to the antiferro-
magnetic Ising model after the local gauge transformation
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Fig. 2. Temperature dependence of the magnetization for dif-
ferent measurement conditions.

σi ≡ SiTi, and all states have an additional degeneracy
of 2Nsites since σi = 1 (resp. −1) can be achieved with
(Si, Ti) = (1, 1) and (−1,−1) (resp. (1,−1) and (−1, 1)).
In fact, for any value of h, the partition function can be
factorized as Z = ZIsingZS where ZIsing is the partition
function of the Ising model on a square lattice, and ZS is
the partition function of paramagnetic spins in a magnetic
field. Accordingly, the free energy per site f is given by:

f = fIsing − kBT ln(2 cosh(βh)) (3)

with β = 1/kBT . The magnetization per site is defined
as usually by m = −∂f/∂h, and since fIsing does not de-
pend on h, we obtain m = tanh(βh). So if the system has
reached its equilibrium state, the magnetization smoothly
saturates as the temperature goes to zero.

However, as we shall see below, this equilibrium state
might be very difficult to reach depending on the history
of the system. To be specific, let us consider the following
protocol: The quench takes place at t = 0, the field is
switched on after a waiting time tw, and the magnetization
is measured after a measuring time tm elapsed after the
field has been switched on. The time elapsed between the
quench and the measurement is denoted by t. In a FC
experiment, tw = 0 and t = tm, while in a ZFC one,
tw > 0 and t = tw + tm.

To mimic such experiments, we have performed Monte
Carlo simulations of the model of equation (2). The ele-
mentary step consists in flipping either a spin or a pseudo-
spin according to Glauber prescription. The site and the
variable (spin or pseudo spin) are chosen randomly, and
the time unit corresponds to a number of steps equal to
the number of degrees of freedom, i.e. twice the number
of sites. In all numerical experiments reported below, the
starting configuration is completely random, correspond-
ing to an infinite temperature, and when it is not switched
off, the magnetic field h is equal to 0.2 in units of J . Typi-
cal results for the magnetization as a function of tempera-
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Fig. 3. Time dependence of the magnetization at given tem-
perature for various measurement conditions (FC and ZFC
with tw = 500, 1000, 2000, 3000). Inset: Plot of the ZFC data
as a function of tm/tw.

ture are shown in Figure 2 for a system of size 400 × 400.
Below a temperature Tg which is smaller than the Curie
temperature Tc ' 2.27J of the underlying Ising model,
there is a clear difference between the ZFC and FC mea-
surements: The ZFC magnetization drops quite abruptly,
as in typical spin-glasses. Note that these curves depend
on tm and tw (this dependence should of course vanish
if tm was infinite) but only weakly in a large parameter
range, as we shall explain below.

To gain some insight into the origin of this behavior,
it is very useful to study the time evolution of the mag-
netization at fixed temperature for different values of tw.
Typical results are given in Figure 3. The most salient fea-
tures are: i) A much faster increase at short times for the
FC experiment (tw = 0) than for the ZFC ones; ii) A sim-
ilarity of the shape of the ZFC curves. In fact, a very good
scaling can be obtained if we plot the magnetization as a
function of tm/tw (see inset of Fig. (3)). Such a scaling is
typical of ageing phenomena [17].

3 Analytical approach: ageing and persistence

To understand the behavior of the ZFC and FC experi-
ments let us first consider the dynamics of the underlying
Ising model in the absence of a magnetic field. After a
quench below the Curie temperature Tc, the model has a
spontaneous staggered magnetization in the variables σi
in terms of statics. However, in the absence of a field that
breaks the symmetry between the two ground states, no
global magnetization develops for an infinite system and
the system stays out of equilibrium. Domains of the two
phases form and coarsen with a characteristic length scale√
t [18] as the evolution is via diffusion of the domain walls

and coalescence of domains. The ergodic time terg for such
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a system scales with the linear size L of the system like L2,
and thus as long as t� terg, the system is out of equilib-
rium and has no global magnetization. We have checked
that for T = 0.6J and L = 400, the ergodic time is of the
order of 4000. Since this regime is the only one accessible
for very large samples, we will limit our discussion to that
regime.

Another point worth noticing about the dynamics of
the Ising model is that, after the short initial stage where
spins with 3 or 4 parallel neighbors have disappeared, flips
take place only at sites with two neighbors up and two
neighbors down. For such sites, the effective field coming
from the coupling to the neighbors is equal to zero, and
we call them 0-sites. Since there is no energy cost to flip
the spin σi of such a site, the probability to flip according
to Glauber dynamics is 1/2. So the flipping rate should be
half the concentration of 0-sites. We have checked numer-
ically that this is indeed the case after a few sweeps. For
T = 0.6J , this is true as soon as t > 40.

Let us now turn to an analysis of the problem in the
presence of a magnetic field. Let us forget the first few
steps and concentrate on times where flips take place at
0-sites. If the magnetic field is small compared to J , a
condition usually fulfilled in experiments, the dynamics
of the Ising spins σi will be essentially unaffected, and
the magnetic field will just favor configurations where the
spins Si are parallel to the field [19]. Now let us suppose
that a 0-site remains so for a while. The equation that
governs the appearance of a magnetization for the S spins
can be easily deduced. If we denote by p+ (resp. p−) the
probability for S to be up (resp. down), Glauber dynamics
implies that p+ satisfies the equation

dp+

dt
=

eβh

e−βh + eβh
p− −

e−βh

e−βh + eβh
p+. (4)

The magnetization, which is related to p+ and p− by p+ =
(1 +m)/2 and p− = (1−m)/2, is thus given by

m = tanh(βh)(1− exp(−t/τ)) (5)

where the relaxation time τ is equal to 1 in the chosen time
units. This is a very short time, especially considering the
very small flipping rate which is achieved after a few steps
(already below 10−2 after 100 sweeps for T = 0.6J). Under
these circumstances, the sites that have been 0-sites in the
presence of the magnetic field should have enough time
to reach equilibrium, and on average their magnetization
should be equal to tanh(βh). So if we call c0(tm, tw) the
proportion of sites that have been 0-sites between tw and
tw + tm this simple argument leads to the prediction that

m(tm, tw) = tanh(βh)c0(tm, tw) (6)

Note that c0(tm, tw) depends only on the dynamics of the
underlying Ising model and not on the magnetic field. To
check this prediction, we have calculated c0(tm, tw) for
different tw corresponding to our ZFC numerical experi-
ments. The agreement is very good – the curves are indis-
tinguishable from the the ZFC calculations of m on the
scale of Figure 3 – and we have checked that it remains
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Fig. 4. Fits of the FC and ZFC data at T/J = 0.6 with the
help of equations (7–9).

so as long as tw is not too small so that the magnetiza-
tion is indeed controlled by 0-sites. This analysis shows
that the ageing behavior of the model of equation (1) is
indeed closely related to the dynamics of the underlying
Ising model.

To understand the magnetization process we therefore
only have to consider c0(tm, tw) for the Ising model. After
the first few steps, domains can be identified, and 0-sites
are on the boundary of the domains. On a square lattice,
they correspond to the diagonal portions of the bound-
ary. Now, after a time tw the characteristic size of the
domains is of order

√
tw. Consequently the total number

of domains is of order 1/tw, and the total length of do-
main walls is proportional to 1/

√
tw. When tm � tw we

remark two important points: (i) the domain walls appear
locally flat, the effects of surface tension and hence cur-
vature are negligible and hence the domain walls diffuse
(as zero modes are the only ones generating dynamics by
this stage), a given point on a domain wall will therefore
diffuse a length

√
tm; (ii) one can neglect the interaction

between domain walls, that is to say the coalescence of
domains. The total number of spins which flip between tm
and tm+tw is therefore proportional to

√
tm× total length

of domain walls. We therefore find that at short times tm
(compared to tw) one has

c0(tm, tw) = const.×
√
tm
tw

(7)

where the constant should be independent of tw. This pro-
vides an excellent fit of the data at short times (see Fig-
ure 4. We have checked that const. ' 0.05 at T = 0.6J
is indeed independent of tw. This argument provides a
very simple explanation of the fact that the larger tw, the
slower the initial increase in the magnetization.

In the case where tw = 0, the above argument can-
not be applied as it is because of the initial steps, where
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flips occur at sites with 3 and 4 parallel neighbors as well,
and because domains are not present right away. Still the
same kind of reasoning suggest that every spin which has
flipped has an average magnetization tanh(βh). Therefore
one has m(t, 0) = tanh(βh)(1−p(t, 0)) where p(t, 0) is the
probability that a given spin has not flipped before time
t. The quantity p(t, 0) has received much attention in the
literature [22] and is called the probability of persistence.
Extensive numerical simulations have shown that for large
times p(t) ∼ 1/tθ, where θ is the persistence exponent
which has been measured as θ ' 0.2 [20] for the two di-
mensional Ising model. One therefore deduces that

m(t, 0) = tanh(βh)(1− (τ/t)θ). (8)

Here τ is a microscopic time scale related to the flipping
rate of the spins. This provides and excellent fit of the
data except at very short times (see Fig. 4).

In the case of tw nonzero, and for t � tw, one may
adopt a coarse grained point of view and cut the system
up into units of size

√
tw. These blocks may be regarded

as effective spins of the sign of the average block stag-
gered magnetization. This is related to block persistence
introduced in [21]. Moreover, the characteristic time scale
τ(tw) for these effective spins is proportional to the time
it takes to reverse the staggered magnetization of a given
block, since this is done by diffusion one has τ(tw) ∼ tw.
One may now apply the reasoning of the case tw = 0 to
obtain

m(t, tw) = tanh(βh)(1− (τ(tw)/t)θ) (9)

for t � tw. This again provides a reasonable fit of the
data (see Fig. (4)), and we have checked that τ(tw) is
proportional to tw.

To summarize, the very slow onset of magnetization
in ZFC experiments follows scaling laws typical of age-
ing, and this is the origin of the spin-glass behavior. This
ageing is a consequence of the very slow march towards
equilibrium of the underlying model in which spins and
pseudo-spins are coupled into an effective Ising spins since
the physical field, which couples only to the spin and not
to the pseudo-spin, does not act as a symmetry breaking
field for that model.

4 Discussion

While the difference between FC and ZFC measurements
of the magnetization is very typical of spin-glasses, a bona
fide spin-glass has many other characteristics which are
not shared by the present model.

First of all, for an infinite system the freezing transition
of a standard spin glass is believed to be a thermodynamic
transition, and the freezing temperature is expected to be
independent of the protocol. In the present case, in or-
der to flip, a spin inside a domain must be able to cross
an energy barrier of 8J . The Arrhenius law gives there-
fore a characteristic flipping time of τa ∼ exp(8J/T ). Such

activated flips are only observed after a time of measure-
ment of order τa. One may therefore define a temperature
depending on the time scale of the measurement Tg(tm),
such that if τa � tm such activated spin flips do not occur
and hence the equilibration of the magnetization within
domains is not possible. The crossover between the two
regimes is therefore given by Tg(tm)/J ∼ 8/ ln(tm). So,
unlike the standard thermodynamic spin glass transition,
the freezing temperature depends on tm. This estimate
of Tg agrees with our Monte Carlo results. If one takes a
measurement time of tm = 500, as for the curves shown in
Figure 2, one finds that Tg/J ∼ 1.287, close to the value
of Tg shown in Figure 2.

Another original aspect of our data with respect to
standard spin glasses is the minimum of the ZFC mag-
netization at a temperature far below Tg. To understand
this, one may make an approximate decomposition of the
magnetization in terms of the activated component ma

within the domains and the component generated by the
domain walls md. We find ma(tm, tw) = tanh(βh)(1 −
exp(−α(h)tm/τa)) (solving the Glauber dynamics explic-
itly for a single spin with its four neighbors fixed paral-
lel shows that α = 1 + cosh(2βh) + O(1/τ2

a )). As ma is
generated within domains and hence in the bulk of the
system (that is to say not at domain interfaces), it is very
weakly dependent on tw. Another type of activated pro-
cess may occur at domain interfaces where a spin with
three neighbors antiparallel and one parallel flips. The en-
ergy barrier for this is 4J . This gives another characteristic
time τ∗a with a corresponding time dependent temperature
T ∗(tm)/J ∼ 4/ ln(tm). For tm = 500 as in Figure 2 one
finds T ∗/J = 0.6436 which corresponds to the minimum
seen on the ZFC curve. For T � T ∗, the system behaves
as if J is infinite on the experimental time scale and only
domain wall diffusion occurs, the only energy involved be-
ing the external field energy h. Here the dynamics is well
described by equation (6), hence the measured magneti-
zation m(tm, tw) increases as T is lowered below T ∗.

Both these effects are dynamic in nature and show
that the behavior we have observed is typical of the out of
equilibrium dynamics observed in spin-glasses. This con-
clusion is in fact consistent with another aspect of our
data, namely the sensitivity of the results to the dynam-
ics used in the simulation. To perform Monte Carlo sim-
ulations, we have made the assumption that spins and
pseudo-spins flip independently of each other. However if
one allows simultaneous flips as well, the behavior will
be very different: These moves will allow the magnetiza-
tion to develop inside the Ising domains, and the system
will polarize after only a few sweeps. In other words, the
breaking of ergodicity is related to the dynamics.

Another way to check how different the present model
is from standard spin glasses is to study the temperature
dependence of the non-linear susceptibility, which is ex-
pected to diverge at the transition in a spin-glass. Prelim-
inary results [23] indicate that the non-linear susceptibility
is not singular in the present case. The absence of another
thermodynamic singularity below the Curie temperature
Tc is also clear from equation (3).
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However, other characteristic aspects of spin-glasses
are also shared by the present model. For instance, the
thermo-remnant magnetizationmTMR shows a very strong
dependence on the time tw elapsed between the quench
and the switching off of the magnetic field: The longer tw,
the slower the decay. A detailed analysis of these results
along the same line is in progress.

Coming back to our original purpose, namely the ex-
planation of the low-temperature behavior of Kagome an-
tiferromagnets, the present model has both merits and
drawbacks. The very clear difference between FC and
ZFC magnetizations is the most interesting aspect of the
results. It shows that the presence of an extra degree of
freedom which is not coupled to the external field can in-
deed lead to a glassy behavior at low temperatures. How-
ever most of the differences with standard spin-glasses are
problematic in that respect: No experimental indication of
a dependence of Tg on the protocol was reported, and the
non-linear susceptibility is indeed enhanced close to Tg.
This is not a final blow however. In fact, these differences
with standard spin glasses all depend on the fact that flip-
ping simultaneously a spin and a pseudo-spin leaves the
Ising spin unchanged. This symmetry will not be present
in more realistic models where spins and pseudo-spins
are treated as Heisenberg variables, while the underlying
mechanism for the difficulty that the system will have to
magnetize after being cooled in zero-field is still expected
to apply. More realistic models with two degrees of free-
dom treated as Heisenberg spins are therefore good can-
didates for effective models to get a spin-glass behavior
in disorder free magnets. Work is in progress along these
lines.

We thank M. Ferrero and F. Becca for allowing us to quote
some results of reference [23] before publication. This work was
partially supported by the Swiss National Science Foundation
under grant number 21-63749.00.
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